

MATHEMATICS DEPARTMENT

Year 12 Methods - Test Number 1 - 2016 Differentiation of Exponential and Trigonometric Functions Resource Free

Name:	SOLUTIONS	Teacher:
Marks:	17	
Time Allowe	ed: 15 minutes	
Instructions		ed any Calculators or notes. with a formula sheet.
1. Find $\frac{d}{d}$	$= \frac{1}{2e^{3x}}$	
	dy dn	2e ^{3x}
		$\frac{-3}{2e^{3x}} \checkmark $
b) <i>y</i>	$= \cos(e^x)$ $\frac{dy}{dx} = \frac{1}{2}$	$-e^{x} \sin(e^{x})$

MATHEMATICS DEPARTMENT

Year 12 Methods - Test Number 1 - 2016 Differentiation of Exponential and Trigonometric Functions Resource Rich

Marks: 28
Time Allowed: 30 minutes
Instructions: You are allowed a ClassPad and 1 page of notes (both sides).
You will be supplied with a formula sheet.
 The population of a colony of numbats is being monitored by a group of scientists from Murdoch University. The population, P, after t years is modelled by the equation
P=4000e ^{-0.01t}
a) What was the initial population of this colony of numbats?
4000 1
ь) Find the exponential growth/decay of this colony?
decay of 1% per annon
c) Find the population after 5 years?
When b=5, P≈ 3804 √ √

Name: _____ Teacher: _____

d) After how many years will the population of numbats be half the size of the original population?

[1,2,2,2 = 7 Marks]

2) An Olympic Ski Jumping slope has been designed so that it follows the curve:

$$y = 3\cos(\frac{\pi x}{4}) + 8$$
 for $0 \le x \le 5$, where x and y are both in metres.

a) What is the take-off angle at the end of the jump (to the nearest degree) remembering that $m = \tan \theta$?

$$\frac{dy}{dx} = -\frac{3\pi}{4}\sin\left(\frac{\pi u}{4}\right) /$$

$$= \tan 0$$

$$\frac{dy}{dx} = -\frac{3\pi}{4}\sin\left(\frac{\pi u}{4}\right) /$$

$$= \tan 0$$

$$+ \sin^{2}\left(\frac{3\pi u}{5}\right) \approx 59.0274^{\circ}$$

$$= \frac{\pi}{4}\sin^{2}\left(\frac{3\pi u}{5}\right) \approx 59.0274^{\circ}$$

$$= \frac{\pi}{4}\sin^{2}\left(\frac{3\pi u}{4}\right) /$$

$$= \frac{59^{\circ}}{4}\cos^{2}\left(\frac{3\pi u}{4}\right) /$$

$$= \frac{59^{\circ}}{4}\cos^{2}\left(\frac{3\pi u}{4}\right) /$$

$$= \frac{59^{\circ}}{4}\cos^{2}\left(\frac{3\pi u}{4}\right) /$$

$$= \frac{11}{4}\cos^{2}\left(\frac{3\pi u}{4}\right) /$$

$$= \frac{59^{\circ}}{4}\cos^{2}\left(\frac{3\pi u}{4}\right) /$$

$$= \frac{11}{4}\sin^{2}\left(\frac{3\pi u}{4}\right$$

b) Sketch the curve below:

3)	Western Australia is suffering from a decrease in average annual rainfall over	time,
	t years, according to the formula $\frac{dR}{dt} =00975R$. The first average annual	
	rainfall measured in WA was 880mm.	

a) Find a formula for the average annual rainfall in this region.

```
R= Roe-010975t VV
or R= 880e-020975t
```

- b) Find the average annual rainfall after:
 - i) 20 years

 When k = 20 R = 724.09 m.
 - ii) 100 years

c) What is the rate at which the rainfall is decreasing after 100 years.

R=331.97m

dR = 0.00975R V

= -0.06975 (371.93) V

= -3.236

Decreasing at around 3.236 mg per year after 100 years

a) $3x^2 tan(x)$
$3x^2(\tan n)^2 + 3x^2 + 6x \tan n \checkmark$
$= \frac{3x^2 \sec^2 x + 6x \tan x}{2} = \frac{3x^2 + 6x \tan x}{\cos^2 x}$
b) [1+cos(2x)] ⁴
$-8(\cos(2n)+1)^3$, $\sin 2n$
c) $\frac{e^{3x}}{(1-5x^2)}$
$-\frac{\left(15e^{3k} \cdot x^2 - 10ne^{3k} - 3e^{3k}\right)}{\left(5x^2 - 1\right)^2}$
[2,2,2 = 6 marks
End of Test
Extra space for working out

4) Differentiate each of the following with respect to x: